今天是星期
020-87748917 / 87226359 hwnano@xuzhounano.com / xuzhounano_sun@126.com

Contact us immediately

联系我们
在线客服

回到顶部

纳米材料在生物医学方面的应用

来源:广州宏武材料科技有限公司     发布时间:2017-11-02浏览量:

      材料是国民经济的基础产业,新材料是材料工业发展的先导,是重要的战略性新兴产业。纳米新材料研发投入激增作为纳米技术同产业关联最紧密的纳米新材料,业已成为各国投巨资进行应用研究的重点领域。纳米新材料的开发研究工作已被众多国家和地区列入科技发展战略,纳米技术势必成为未来世界科技创新的主要推动力量之一。
 
      纳米技术是当今世界最有前途的决定性技术。纳米材料在力学、磁学、电学、热学、光学和生命等方面的重要作用和应用前景。有人曾经预测在21世纪纳米技术将成为超过技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。

纳米材料的特殊性质
  (一)力学性质
  纳米材料的位错密度很低,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

  (二)磁学性质
  纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。

    (三)电学性质
  2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。

    (四)热学性质
  纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。
    (五)光学性质
   纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中广泛。
    (六)在生物医药方面,纳米技术更是有着独到的地方。
    6.1.1纳米碳材料 
   纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。 
  碳纳米管有独特的孔状结构,利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。
    6.1.2纳米高分子材料 
  纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 
    6.1.3纳米复合材料 
  目前,国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。

6.2纳米材料在生物医学应用中的前景 
   6.2.1用纳米材料进行细胞分离 
  利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器)。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

  6.2.2用纳米材料进行细胞内部染色 
  比利时的De Mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色,从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

 6.3纳米材料在医药方面的应用  

  6.3.1纳米粒子用作药物载体 
  一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm,引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm,细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。
  磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口、上下呼吸道、肛门以及眼、耳等。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。

  6.3.2纳米抗菌药及创伤敷料 
  Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。
    6.3.3智能—靶向药物 
  在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功。 
  
6.4纳米材料用于介入性诊疗 
  日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

6.5纳米材料在人体组织方面的应用 
  纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。 
  
      目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。 
  
      纳米生物学的设想,是在纳米尺度上应用生物学原理,研制可编程的纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等);还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

  瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段。

  纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。
 
       宏武纳米生产企业有着多年的纳米材料生产经验,我们的产品除了服务于国内各大高校科研所和公司,也远销海内外。客户反馈效果不错,这是宏武纳米所有员工最大的动力。期待纳米材料应用于更多的行业领域,我们一直努力着……
 

分享到: